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S1 Algorithms for subset selection

Large differences between the sets ACTIVE and CONTROL may influence the
statistical analysis of their behavior. Therefore, we decided to preprocess the
datasets by excluding some spines, such that the means in the new sets are
close with respect to the statistical test used. Below we show the pseudocode
for algorithm, where the subsets of spines are selected, forming new sets for
further analysis.

Algorithm S1 SUBSET-SELECTION

Input:

Lists of spines: ACTIVE and CONTROL

A function of state of all variables: STOP CONDITION
Output:

Lists of spines: ACTIVESUBSET and CONTROLSUBSET

1: Normalize each feature of ACTIVE and CONTROL by subtracting the common mean
and dividing by the common standard deviation,

2: Initialize ACTIVESUBSET and CONTROLSUBSET to empty lists,

3: while STOP CONDITION is not satisfied do

4 draw the pair of spines 1 € ACTIVE and 2 € CONTROL of the smallest euclidean

distance
5 move x1 and x2 from their lists respectively to ACTIVESUBSET and
CONTROLSUBSET
: end while
7: return ACTIVESUBSET and CONTROLSUBSET
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52 MNMatrix forrmulation of Shape Transition ZWiodel

Shape Transition AMModel can be represented in the matrix form where:

— W - W =< &k matrix of weights where each row represents a single spine at
titme £;

— P - k x k matrix of transition probabilities P(C,, — C,,|C,,) indexed by n
and m.

Predictions of the model can be calculated as follows:

0
Wpudu.‘mﬂ =W"P

Prediction error can be calculated as follows ([|A]| = |/, AZ):
= ||I’)I prediction — H’fl ||2

The optimization problem is given by: (15 - k-element vertical vector of ones):

objective : argminp ||[WOP — W1||?
subject to :

P=0

Pl =1,

and can be transformed to the standard quadratic programming form:
objective : argmin, %ITQI +clx
subject to :
Az <b
Aeq - x = beq

For this we use that:

IWOP — W2 = Z((W“Pn. wl)?

_Z WOP); ;)? ZQW“P)UWI —|—ZW‘




such that we arrive at the following parameters for the quadratic programming
problem:

— x = flatt(P) is a vector of length k% where, for a square matrix of size
k x k:

k?
fE(ltt(P) - I:‘P.’ mod k, L%J j| =0

~ Q=[] where

o {E;‘iﬂ WiiWi; 1] = 4]

qi,j 0 otherwise

— ¢ = —flatt([W;W},]; ;) is a vector of length &2

— A = —I where I is an identity matrix of size k? x k?
— b = 0,2 is a vector of zeros of length k?

— Aeq = |a; ;| where

s = {4 L) = 14]

0 otherwise
— beq = 1,2 is a vector of ones of length k2

This quadratic programming problem can be solved for example with the
quadprog R package.



S3 Supplemental figures and tables
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Fig. S1 Proportion of the explained variance for different numbers of components (left) and
loadings (weights) for two of the most important components (right). PCA was calculated on
DESCRIPTORS of CONTROL U ACTIV E data. For two features (components) about
91% of the variance is explained. We see that Comp.1’ is composed mostly of features related
to size such as length, circumference, and area. Therefore, this feature can be treated as a
generalized size descriptor. Similarly, we can interpret Comp.2' as a generalized contour
(shape slenderness) descriptor. N=number of spine, D=number of dimensions, #{ number
of spines from ACTIVE group, #d number of spines from CONTROL group
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Fig. S2 Proportion of the explained variance for PCA on components (features) describing
size (left) and contour (right). PCA was calculated separately on DESCRIPTORSSIZE —
{length, circumference, area} (size related features) and on DESCRIPTORSCONTOUR
{hw, foot, mwl, mw, wlr, lwr, lar, nw} (contour slenderness related features) of CONTROLU
ACTIV E data. Using the first feature from PCA on DESCRIPTORSS!ZE and the first
feature from PCA on DESCRIPTORSCONTOUR g7 f the variance is explained.



Table S1 Transition matrices to — ¢, for CONTROL300 and ACTIVE300 for hierarchical
clustering. Values are denoted in percents, SE in brackets, source clusters in rows, and
destination clusters in columns. Only clusters 1, 2 and 4 contain enough spines to produce
credible conclusions. According to estimated errors, transitions observed for other cases are
not meaningful.

CONTROL300
From~1o | 1 2 3 4 5 6 7-10
1 91 (34) 6 (2) 0 2 (1) 0 0 0
2 52 (20) 41 (16) 0 2 (1) 2 (1) 2 (1) 0
3 0 100 (58) 0 0 0 0 0
4 54 (22) 15 (8) 8 (5) 15 (8) 8 (5) 0 0
5 0 0 100 (63) 0 0 0 0
6 0 0 0 0 0 0 0
7-10 0 0 0 0 0 0 0
ACTIVES00
m 1 2 3 4 5 6 7-10
1 87 (32) 12(4) O 0 0 0 0
2 28 (11) 67 (25) 0 2 (1) 2 (1) 0 0
3 0 0 0 0 0 0 0
4 73(29) 27(11) 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7-10 0 0 0 0 0 0 0




WSS vs. number of clusters WSS vs. fuzziness
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(b) hierarchical clustering (k = 10)

Fig. S3 Parameters selection for shape clustering methods (WSS plots for ACTIVE U
CONTROL). Red circles mark the selected values in 'knee points’. The dashed line is the
result of linear regression. The knee point is the most distant point on the WSS plot measured
from linear regression and localized between two intersections of WSS and linear regression
curves,



Table S2 Transition matrices tg — t1 for CONTROLS300 and ACTIVE300 for emeans
clustering. Values are denoted in percents, SE in brackets, source clusters in rows, and
destination clusters in columns. In contrast to hierarchical clustering case, all clusters contain
nonneglible amounts of spines.

CONTROL300
m 1 2 3 4 5 6 7 8
1 43(18) 5(4) 0(1) 4(3) 22(11) 0(4) 0(3) 25(12)
2 2(1) 17(6) 13(5) 10(4) 3(2) 21(8) 28(10) 6 (3)
3 0(0) 5(2) 50(19) 0(1) 0(0) 15(6) 29(12) 1 (1)
4 1(1) 19(7) 5(2) 35(13) 10(4) 14 (7) 4(2) 12 (5H)
5 11 (5) 11(5) 3(2) 23(9) 27(12) 3(3) 2(2) 20 (8)
6 2(1) 20(8) 10(4) 8(4) 5(3) 40(14) 15(6) 0(1)

7 5(2) 15(6) 19(8) 17(7) 4(2) 10(4) 21(8) 9(4)
8 4(3) 19(8) 2(2) 14(6) 17(8) 9(5)  11(6) 24(10)
ACTIVE300

N 1 2 3 4 5 6 7 8

1 33(15) 19(9) 7(4) 0(4) 11(7) 0(1) 12(6) 19 (9)
2 2(1) 239 5(3) 25(10) 5(3) 15(8) &(4) 16(7)
3 1(1) 13 (5) 40(15) 2(1) 0 (0) 13 (5) 27(10) 3 (1)
4 0(0) 14(6) 14(6) 20(9) 4(2) 31(13) 15(6) 2(2)

5 19(9) 0(1) 0(0) 21(10) 46(18) 0(0) 0(1) 14 (6)
6 5(2) 13(5) 21(8) 5(3) 3(1) 30(12) 19(7) 6(3)

7 2(1) 15(5) 16(6) 16(6) 4(2) 18(7) 24(9) 6 (2)
8 9(4) 15(6) 1(1) 19(7) 18(8) 0(0) 5(2) 33(13)
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Fig. S4 Results (clusters plot, transition graph and spines selected as clusters’ represen-
tants) of cmeans clustering applied to ACTIVEU CONTROL. For each cluster, the initial
weight (sum of weights of spines in the cluster at time ¢p) is presented. Only transitions of
values higher than 20% are shown on the graph. In contrast to hierarchical clustering case,
all clusters contain nonneglible amounts of spines. However, differences between spines from

different clusters are not that significant and easy to interpret.
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Fig. S5 Transition graphs for for emeans clustering. For each cluster the initial weight
(sum of spines’ weights in the cluster at time tg) is presented. The transition probabilities
between clusters (indicated in rounded-of percent) are noted at the respective edges of the
transition graph. The percentages are calculated for each cluster separately. Only transitions
(probabilities) of values higher than 20% are shown. Subfigures should not be compared
because they are computed for populations of different characteristic at tg.
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Fig. S6 Transition graphs for balanced subpopulations and emeans clustering. For each
cluster, the initial weight (sum of spines’ weights in the cluster at time tg) is presented.
The transition probabilities between clusters (indicated in rounded-of percent) are noted at
the respective edges of the transition graph. The percentages are calculated for each cluster
separately. Only transitions of values higher than 20% are shown.
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(a) RDC distribution for emeans cluster- (b) RDC distribution for hierarchical clus-
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Fig. ST The probability density plots obtained from a bootstrap for RDC' statistic used
to compare CONTROLS300 and ACTIVE300. Kernel estimation used for smoothing. Sta-

tistically significant difference between subpopulations were observed for emeans case.

(a) SMD distribution for c¢means cluster- (b) SMD distribution for hierarchical
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Fig. S8 The probability density plots obtained from a bootstrap for SM D statistic used

to compare CONTROLS300 and ACTIVE300. Kernel estimation used for smoothing. Sta-

tistically significant difference between subpopulations were observed for hierarchical case.
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